CSC 243 - Java Programming

Exceptions and Errors



Basic Exception Handling

m A try - catch block is used to handle exceptions from
methods that throw exceptions

try {
/* code that may throw an exception */
}
// type is the exception type and
// ex 1is a variable name
catch (type ex) {
/* code to process the exception */

}



Exception Types

m Exceptions are objects and all exceptions have a root class of
java.lang. Throwable
m The main types of exceptions are:
m Error class: thrown by the JVM and represent internal system
errors
m Exception class: describe errors caused by programs and
external circumstances
m RuntimeException class: A subclass of Exception, which
describe programming errors
m Error, RuntimeException, and their subclasses are unchecked
exceptions

m All other exceptions are checked exceptions, meaning that
the compiler forces the programmer to check



Declaring Exceptions

m To declare an exception in a method, the throws keyword is
used

public void myMethod () throws IOException

m A method may declare more than one exception, which are
separated by commas

public void myMethod ()
throws Exceptionl, Exception2, Exception3



Throwing Exceptions

m Throwing an exception is the terminology used when a
program creates an instance of an exception type and throws it

m To throw an exception, the throw keyword is used

Exception ex =
new Exception("Something broke");

throw ex;



Catching Exceptions

m The code that processes an exception is called an exception
handler

m An exception handler is found by propagating the exception
backward through the chain of method calls

try {
/* statements */
}
catch (Exceptionl exl) {
/* handler for exception 1 */
}
catch (Exceptionl ex2) {
/* handler for exception 2 */

}



Getting Information From Exceptions

m The java.lang.Throwable class has the following methods:
B getMessage: returns a message String describing the

exception
m toString: returns a String of the form " ExceptionName:
getMessage()”

m printStackTrace: prints the Throwable object and the call
stack to the console
m getStackTrace: returns an array of stack trace elements



The finally clause

m A finally clause is always executed whether an exception
occurred or not

try {
/* statements */
}
catch (Exception ex) {
/* exception handlerx*/
}
finally A
/* final statements */

}



Rethrowing Exceptions

m An exception handler can rethrow an exception

try {
/* statements */

}
catch (Exception ex) A

/* some exception handler code */
throw ex;



Chained Exceptions

m A chained exception is an exception that is rethrown with
additional information and the original exception

try {
/* statements */
}
catch (Exception ex) {
throw new Exception("Info", ex);

3



Defining Custom Exceptions

m Custom exception classes can be defined by extending the
java.lang.Exception class

public class MyException extends Exception

m Note that custom exceptions that are subclasses of
Exception are checked exceptions



