CSC 243 - Java Programming

Java 8 Features



Functional Interfaces

A functional interface, also called a single abstract method
(SAM) interface, has only one abstract method declared in
the interface definition

An interface can declare abstract methods from
java.lang.0Object and still be considered a functional
interface

The @FunctionalInterface annotation can be used to
enable compile time checking of the interface

The java.util.Function package contains many functional
interfaces

Example:

@FunctionallInterface

public interface ExampleFunctionallnterface {

public void doTheThing();
public String toString();



Default Methods

m The default keyword can be used to provide a default
implementation of an interface method

m When a class implements multiple interfaces with the same
default methods the compiler cannot resolve which method to
call. There are two ways to handle the ambiguity:

m The class overrides the default implementation
m The class calls the default method of the specified interface
using the super keyword



Default Method Example

public interface Omne {
default void print() {
System.out.println("One");
}
}

public interface Two {
default void print() {
System.out.println("Two");
}

public class C implements One, Two {
default void print () {
Two .super.print ();

}



Lambda Expressions

m Lambda expressions are typically used to define inline
implementations of functional interfaces

m Basic syntax:
(parameter, [parameters]) -> {expression body}
m Additional characteristics:

m Type declarations are optional

m The parenthesis are optional if there is only one parameter

m The curly braces around the body are optional if body contains
a single statement/expression

m The return keyword is optional if the body contains a single
expression



Method References

m A method reference is shorthand syntax for a lambda
expression that executes one method. The general syntax is:
Object: :methodName

m A method reference can be used for the following types of
methods:

m Static method:
(args) -> Class.staticMethod(args)
Class::staticMethod

m Instance method of an object of a particular type:
(obj, args) -> obj.instanceMethod(args)
ObjectType: :instanceMethod

m Instance method of an object of an existing type:
(args) -> obj.instanceMethod(args)
obj::instanceMethod

m Constructor:
(args) -> new ClassName(args)
ClassName: :new



Streams

A stream represents a sequence of objects from a source with the
following characteristics:

m A stream provides a sequence of elements where the elements
are generated on demand

m The source of a stream can be a Collection, Array, or 1/0
resource

m The stream supports aggregate operations

m Most stream operations return the stream itself allowing
stream operations to be pipelined

m Stream operations provide implicit iteration



