
CSC 243 - Java Programming

Java 8 Features



Functional Interfaces

A functional interface, also called a single abstract method
(SAM) interface, has only one abstract method declared in
the interface definition

An interface can declare abstract methods from
java.lang.Object and still be considered a functional
interface

The @FunctionalInterface annotation can be used to
enable compile time checking of the interface

The java.util.Function package contains many functional
interfaces

Example:

@FunctionalInterface

public interface ExampleFunctionalInterface {

public void doTheThing ();

public String toString ();

}



Default Methods

The default keyword can be used to provide a default
implementation of an interface method

When a class implements multiple interfaces with the same
default methods the compiler cannot resolve which method to
call. There are two ways to handle the ambiguity:

The class overrides the default implementation
The class calls the default method of the specified interface
using the super keyword



Default Method Example

public interface One {

default void print() {

System.out.println("One");

}

}

public interface Two {

default void print() {

System.out.println("Two");

}

}

public class C implements One , Two {

default void print() {

Two.super.print ();

}

}



Lambda Expressions

Lambda expressions are typically used to define inline
implementations of functional interfaces

Basic syntax:
(parameter, [parameters]) -> {expression body}

Additional characteristics:

Type declarations are optional
The parenthesis are optional if there is only one parameter
The curly braces around the body are optional if body contains
a single statement/expression
The return keyword is optional if the body contains a single
expression



Method References

A method reference is shorthand syntax for a lambda
expression that executes one method. The general syntax is:
Object::methodName

A method reference can be used for the following types of
methods:

Static method:
(args) -> Class.staticMethod(args)

Class::staticMethod

Instance method of an object of a particular type:
(obj, args) -> obj.instanceMethod(args)

ObjectType::instanceMethod

Instance method of an object of an existing type:
(args) -> obj.instanceMethod(args)

obj::instanceMethod

Constructor:
(args) -> new ClassName(args)

ClassName::new



Streams

A stream represents a sequence of objects from a source with the
following characteristics:

A stream provides a sequence of elements where the elements
are generated on demand

The source of a stream can be a Collection, Array, or I/O
resource

The stream supports aggregate operations

Most stream operations return the stream itself allowing
stream operations to be pipelined

Stream operations provide implicit iteration


